Utilization of Rice Straw Waste in the Manufacture of Edible Film (Study of the Addition of Lignin and Sorbitol)

Authors

  • Ringgo E. P. Putra Universitas Pembangunan Nasional Jawa Timur
  • Cakrasena R. Santoso Universitas Pembangunan Nasional Jawa Timur
  • Titi Susilowati Universitas Pembangunan Nasional Jawa Timur

DOI:

https://doi.org/10.59141/jiss.v4i02.782

Keywords:

Rice Straw, lignin, Cellulose, Edible Film

Abstract

Rice straw is a very abundant lignocellulose agricultural waste in Indonesia. This waste is generally used as much as 31% for animal feed, 7% for industrial purposes, and 62% burned in rice fields. This burning can cause respiratory disorders such as ARI and cancer. Lignocellulose itself is a polysaccharide consisting of lignin, cellulose, and hemicellulose. The lignin content in rice straw can be used for the production of edible film, so as to increase its usefulness and reduce the percentage of incineration of this waste in rice fields. Edible film is a thin layer made from edible materials and laid between food components. The main components constituting edible film are hydrocloids/lipids/composites, fillers, and plasticizers. The use of the addition of a plasticizing agent is to make edible film elastic. The use of this filler is to modify the edible nature of the film you want to produce. Examples of oligomeric substances and fillers are sorbitol and lignin. In this study, sorbitol and lignin materials were added to cellulose biomass materials derived from rice straw. These materials are stirred using a magnetic stirrer at a speed of 400 rpm and a temperature of 65oC for 25 minutes before the mixture is printed on a glass plate. After the edible film is printed and dried, an analysis of tensile strength and degradation of the edible film is carried out. The results showed a decrease in the tensile strength value of edible film with the lowest downward trend in the addition of 3% lignin lignin and 9 ml sorbitol. The results of the % degradation analysis show that the value of % degradation tends to increase without the addition of lignin.

References

Aadil, K. R., Barapatre, A., & Jha, H. (2016). Synthesis and characterization of Acacia lignin-gelatin film for its possible application in food packaging. Bioresources and Bioprocessing, 3(1), 1–11.

Abraham, M. (2017). Encyclopedia of sustainable technologies. Elsevier.

Aini, N., Wijonarko, G., & Sustriawan, B. (2016). Sifat fisik, kimia, dan fungsional tepung jagung yang diproses melalui fermentasi. Agritech, 36(2), 160–169.

Ambarsari, W., Suherman, A., & Mahmud, Y. (2019). Jerami Padi Fermentasi sebagai Alternatif Solusi Pakan Sapi Berkualitas di Desa Majasari, Indramayu. Abdi Wiralodra: Jurnal Pengabdian Kepada Masyarakat, 1(2), 80–94.

Arief, M. D., Mubarak, A. S., & Pujiastuti, D. Y. (2021). The concentration of sorbitol on bioplastic cellulose based carrageenan waste on biodegradability and mechanical properties bioplastic. IOP Conference Series: Earth and Environmental Science, 679(1), 12013.

Ashter, S. A. (2016). Introduction to bioplastics engineering. William Andrew.

Bajpai, P. (2017). Carbon fibre from lignin. Springer.

BPS. (2021). Luas Panen, Rata-rata Produksi dan Produksi Padi Sawah dan Ladang. Badan Pusat Statistik Kabupaten Sidoarjo.

Idawati, I., Rosnina, R., Jabal, J., Sapareng, S., Yasmin, Y., & Yasin, S. M. (2017). Penilaian kualitas kompos jerami padi dan peranan biodekomposer dalam pengomposan. Journal Tabaro Agriculture Science, 1(2), 127–135.

Kartikasari, S. N., Sari, P., & Subagio, A. (2016). Karakterisasi sifat kimia, profil amilografi (rva) dan morfologi granula (sem) pati singkong termodifikasi secara biologi. Jurnal Agroteknologi, 10(01), 12–24.

Kuutti, L. (2013). Cellulose, starch and their derivatives for industrial applications: Structure-property studies.

Maryanti, E., Gustian, I., & Bagaskara, I. (2018). Pengaruh Penambahan Nanopartikel ZnO yang Disintesis Menggunakan Capping Agent Bawang Putih Terhadap Sifat Kuat Tarik dan Perpanjangan Putus Bioplastik dari Pati Ubi Jalar.

Maulana, A. W., Rochdiani, D., & Sudrajat, S. (2020). Analisis Biaya, Pendapatan Dan R/C Agroindustri Tahu Di Desa Cidadap Kecamatan Ciamis Kabupaten Ciamis. Jurnal Ilmiah Mahasiswa Agroinfo Galuh, 7(2), 324–331.

Merijs‐Meri, R., Zicans, J., Ivanova, T., Bochkov, I., Varkale, M., Franciszczak, P., Bledzki, A. K., Danilovas, P. P., Gravitis, J., & Rubenis, K. (2019). Development and characterization of grain husks derived lignocellulose filler containing polypropylene composites. Polymer Engineering & Science, 59(12), 2467–2473.

Muin, R., Anggraini, D., & Malau, F. (2017). Karakteristik fisik dan antimikroba edible film dari tepung tapioka dengan penambahan gliserol dan kunyit putih. Jurnal Teknik Kimia, 23(3), 191–198.

Nisah, K. (2018). Study pengaruh kandungan amilosa dan amilopektin umbi-umbian terhadap karakteristik fisik plastik biodegradable dengan plastizicer gliserol. BIOTIK: Jurnal Ilmiah Biologi Teknologi Dan Kependidikan, 5(2), 106–113.

Nitsos, C., Rova, U., & Christakopoulos, P. (2017). Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energies, 11(1), 50.

Polnaya, F. J., Ega, L., & Wattimena, D. (2016). Karakteristik edible film pati sagu alami dan pati sagu fosfat dengan penambahan gliserol. Agritech, 36(3), 247–252.

Putra, A. D., Johan, V. S., & Efendi, R. (2017). Penambahan sorbitol sebagai plasticizer dalam pembuatan edible film pati sukun. Jurnal Online Mahasiswa (JOM) Bidang Pertanian, 4(2), 1–15.

Rahmawati, M., Arief, M., & Satyantini, W. H. (2019). The effect of sorbitol addition on the characteristic of carrageenan edible film. IOP Conference Series: Earth and Environmental Science, 236(1), 12129.

Rhofita, E. I. (2016). Kajian pemanfaatan limbah jerami padi di bagian hulu. Jurnal Al-Ard: Jurnal Teknik Lingkungan, 1(2), 74–79.

Santoso, B. (2020). Edible Film Teknologi dan Aplikasinya. Unsri Press.

Sharma, K., Goyat, M. S., & Vishwakarma, P. (2020). Synthesis of Polymer Nano-composite coatings as corrosion inhibitors: A quick review. IOP Conference Series: Materials Science and Engineering, 983(1), 12016.

Sitompul, A. J. W. S., & Zubaidah, E. (2017). Pengaruh jenis dan konsentrasi plasticizer terhadap sifat fisik edible film kolang kaling (Arenga pinnata). Jurnal Pangan Dan Agroindustri, 5(1).

Souza de Miranda, C., Ferreira, M. S., Magalhães, M. T., Gonçalves, A. P. B., Carneiro de Oliveira, J., Guimarães, D. H., & José, N. M. (2015). Effect of the glycerol and lignin extracted from Piassava fiber in cassava and corn starch films. Materials Research, 18, 260–264.

Sukaryani, S. (2018). Kajian Kandunganlignin Dan Selulosa Jerami Padi Fermentasi. Jurnal Ilmu-Ilmu Pertanian, 2(2).

Suryani, R. R. (2021). Pemanfaatan protein ampas tahu sebagai bahan dasar pembuatan Bioplastik (Plastik Biodegradable). UIN Sunan Ampel Surabaya.

Sutini, S., Widihastuty, Y. R., & Ramadhani, A. N. (2019). Hidrolisis Lignoselulosa dari Agricultural Waste Sebagai Optimasi Produksi Fermentable Sugar. Equilibrium Journal of Chemical Engineering, 3(2), 59–68.

Yang, J., Ching, Y. C., & Chuah, C. H. (2019). Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers, 11(5), 751.

Zadeh, E. M., O’Keefe, S. F., & Kim, Y.-T. (2018). Utilization of lignin in biopolymeric packaging films. ACS Omega, 3(7), 7388–7398.

Zhang, Y., Liao, J., Fang, X., Bai, F., Qiao, K., & Wang, L. (2017). Renewable high-performance polyurethane bioplastics derived from lignin–poly (ε-caprolactone). ACS Sustainable Chemistry & Engineering, 5(5), 4276–4284.

Downloads

Published

2023-02-20

How to Cite

E. P. Putra, R., R. Santoso, C. ., & Susilowati, T. . (2023). Utilization of Rice Straw Waste in the Manufacture of Edible Film (Study of the Addition of Lignin and Sorbitol). Jurnal Indonesia Sosial Sains, 4(02), 166–173. https://doi.org/10.59141/jiss.v4i02.782