Vol. 5, No. 5, May 2024
E-ISSN: 2723-6692
P-ISSN: 2723-6595
http://jiss.publikasiindonesia.id/
Jurnal Indonesia Sosial Sains, Vol. 5, No. 5, May 2024 1215
Performance Investigation of Boost Converter Based on Fuzzy
Logic Using Mamdani Rules
Khairul Muamalah, I Ketur Wiryajati, I Nyoman Wahyu Satiawan
Universitas Mataram, Nusa Tenggara Barat, Indonesia
Email: muamalahkha[email protected]m, kjaiwirya@unram.ac.id, nwahyus@unram.ac.id
Correspondence: kjaiwiry[email protected]
*
KEYWORDS
ABSTRACT
Boost Converter;
Investigation; PID; Fuzzy
Logic; Simulink
Boost Converter is one type of DC converter that is often used
for various purposes where the output voltage is equal to or
higher than the input voltage. To get an output voltage higher
than the input voltage commonly used by electrical and
electronic equipment, a voltage increase is needed that can be
varied as needed. One way to increase the voltage with a
variable is to use the Boost Converter with Fuzzy Logic
control. This research proposes a Boost Converter that can
increase the variable direct voltage. Boost Converter
proposed Fuzzy Logic using Mamdani's rules as a controller.
Boost Converter is investigated on Open Jacks Boost
Converter, Closed Loop Boost Converter and Boost Converter
Fuzzy Logic Control Duty cycle on Boost converters using PID
and Fuzzy Logic implemented using Simulink Matlab. The
results of the investigation show that the Boost Converter
designed in this study has worked well according to the
purpose.
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
1. Introduction
Due to population growth and societal progress, the consumption of electrical energy is
increasing, which leads to a decrease in the availability of fossil fuels. The use of power electronics
converter technology in everyday life is increasing along with current technological advances; one
example is the application of DC converters that utilize the Boost Converter technique. With this boost
converter system, you can meet the requirements of variable output voltage sources by using non-
insulating switching-type DC regulators (Hushaini et al., 2019; Setiawan & Yuhendri, 2020). You can
set the output voltage value to be higher than the input voltage value.
e-ISSN: 2723-6692 🕮 p-ISSN: 2723-6595
Jurnal Indonesia Sosial Sains, Vol. 5, No. 5, May 2024 1216
A converter that raises the DC voltage is known as a boost converter. If the voltage requirement
of an electronic device exceeds the available power supply voltage, then this circuit functions as a
power source.
Figure 1 Boost Converter
Boost converter This research utilizes fuzzy logic control and several Pid control techniques
(Harselina & Hendri, 2019).
PID control is often used and taught widely in university control systems courses. This is due
to the closed-loop control mechanism on the system, which is easy to use and can be operated with
other control mechanisms. There are three control methods in PID control systems: P (proportional),
D (derivative), and I (integral). Each control approach has its pros and cons (Ali, 2004; Diaz et al.,
2019; Li et al., 2006).
󰇛
󰇜





Figure 2 Feedback control system block diagram
Logic that has fuzzy value or similarities between right and wrong is called fuzzy logic. A value
in fuzzy logic theory can be true and false at the same time (Jati et al., 2020). But the weight of a
person's membership determines how much existence and guilt he has. The three main principles of
fuzzy logic are fuzzification, rule base, and defuzzification (Nasution, 2012; Saelan, 2009).
Fuzzyfukasi
Reasoning
Basic Rules
Input
Output
e-ISSN: 2723-6692 🕮 p-ISSN: 2723-6595
Jurnal Indonesia Sosial Sains, Vol. 5, No. 5, May 2024 1217
Figure 3 Fuzzy Logic Controller system
Table 1 Rule Base Fuzzy
de\e
N
Z
P
N
N
N
Z
Z
N
Z
P
P
Z
P
P
2. Materials and Methods
Basic Research Framework
In this study to assess the effectiveness and efficiency of the output voltage of the Boost
Converter with Different treatments. Open Jacks Boost Converter (Febrianto et al., 2018), Closed Jacks
Boost Converter with Pid Control, and Fuzzy Logic Control Boost Converter. used Matlab/Simulink
simulation ijing.
Stages of Research
a. Boost Converter System Design
During this research process, it uses many stages. The stages of the process used are as follows.
Start
Calculate RLC
Boost Converter Test
Results are
appropriate?
RLC Value
Boost Converter
Determine

and D
values
Yes
No
e-ISSN: 2723-6692 🕮 p-ISSN: 2723-6595
Jurnal Indonesia Sosial Sains, Vol. 5, No. 5, May 2024 1218
Figure 4 Research Flowchart
Konverter Boost Design
Specify the variables as follows before calculating the value of the component variable to be used:
Duty cycle = 5%-100%
Resistor (R) = 10 ohm
Inductor (L) = 10 µH
Kapasitor(C) = 100 µF
The next stage is to determine the input power (Pin), output power (Pout), and efficiency after receiving
the results of the Simulink inquiry. You can use the following equation.
Determining the outgoing voltage




(1)
Determine the inlet power



(2)

value
appropriate?



Values

dan

Values
Efficiency
appropriate
?
Analysis
Finish
Yes
Yes
No
No
e-ISSN: 2723-6692 🕮 p-ISSN: 2723-6595
Jurnal Indonesia Sosial Sains, Vol. 5, No. 5, May 2024 1219
Determine power out



(3)
Determining Efficiency




(4)
3. Result and Discussion
The findings and analysis of many studies conducted using various methodologies on several
series of Boost Converters are presented below.
a. Open Jacks Boost Converter
The circuit below is used for the simulation of the Open Loop Converter Boost circuit. It has a
fixed input voltage of 12V, a duty cycle that ranges from 5% to 100%, a resistor (R) of 1 ohm, an
inductor (L) of 10 μH, and a capacitor (C) of 100 μF (Nurcahyo et al., 2023).
Figure 5 Open Jack Boost Converter Series
Table 2 Data Boost Converter Open
No
Vin
(V)
Iin
(A)
D
(%)
Vout
(V)
Iout
(A)
Pin
(W)
Pout
(W)
Efesiensi
(%)
1
12
11.22
5
11.19
11.79
134.64
131.93
97
2
12
11
10
12.47
12.47
137.52
155.501
113
3
12
11.94
15
13.22
13.22
143.28
174.768
121
4
12
12.73
20
14.05
14.05
152.76
197.403
129
5
12
13.9
25
14.97
14.97
166.8
224.101
134
6
12
15.53
30
15.98
15.98
186.36
255.36
137
7
12
17.75
35
17.09
17.09
213
292.068
137
e-ISSN: 2723-6692 🕮 p-ISSN: 2723-6595
Jurnal Indonesia Sosial Sains, Vol. 5, No. 5, May 2024 1220
Table 1 shows that the output voltage can be increased using the Boost Converter. However, efficiency
figures and output voltage remain erratic based on the value of the duty cycle used. But in the end,
the greatest efficiency produced was worth 137% (Arvianto et al., 2020; Nurwati et al., 2022).
Graph 1: Vin and Vout compare to Duty cycle
Graph 2 Comparison D to Efficiency
8
12
20.69
40
18.29
18.29
248.28
334.524
134
9
12
24.53
45
19.58
19.58
294.36
383.376
130
10
12
29.51
50
20.92
20.92
354.12
437.646
123
11
12
35.86
55
22.27
22.27
430.32
495.953
115
12
12
43.89
60
23.52
23.52
526.68
553.19
105
13
12
53.85
65
24.52
24.52
646.2
601.23
93
14
12
65.84
70
25.01
25.01
790.08
625.5
79
15
12
79.65
75
24.62
24.62
955.8
606.144
63
16
12
94.4
80
22.91
22.91
1132.8
524.868
46
17
12
108.3
85
19.47
19.47
1299.6
379.081
29
18
12
118.6
90
14.81
14.81
1423.2
219.336
15
19
12
125.3
95
12.96
12.96
1503.6
167.962
11
20
12
131.1
100
11.23
11.23
1573.2
126.113
8
e-ISSN: 2723-6692 🕮 p-ISSN: 2723-6595
Jurnal Indonesia Sosial Sains, Vol. 5, No. 5, May 2024 1221
Figure 6 Waveforms of Iout, Vout and Iin r
Number Boost Converter Kalang Open
b. Konverter Boost Kalang Tertutup dengan Kontrol PID
By providing a progressive increase in input voltage, simulation testing of the Closed Loop Boost
Converter circuit with PID control was carried out. While resistors (R), capacitors (C), and
inductors (L) all have the same value as in the previous circuit (Putri & Aswardi, 2020).
The value of the constant Kp is 0.01, the value of the constant Ki is 50, and the value of the
constant Kd is 0. PID tuning is automatically performed using MATLAB software to determine
the value of the PID constant.
Figure 6 Closed Range Boost Converter
From the series above, the results of the investigation in table 1 are as follows
Table 3 Data Boost Converter Open
No
Vin
(V)
I in
(A)
Vout
(V)
I out
(A)
P in
(W)
P out
(W)
Efisiensi
(%)
1
5
49.03
5.486
5.486
245.15
30.09
12
2
6
59.01
6.601
6.601
354.06
43.57
12
e-ISSN: 2723-6692 🕮 p-ISSN: 2723-6595
Jurnal Indonesia Sosial Sains, Vol. 5, No. 5, May 2024 1222
Table 3 illustrates that the Closed Snapper Boost Converter with PID control technique can
produce a high-efficiency value of >63% and increase the applied voltage. In addition, when the input
voltage rises, the output voltage value also rises (Putri & Aswardi, 2020).
Graph 3 Vin to Vout Comparison
Graph 4 Vin to Efficiency Comparison
Figure 7 Waveforms of Iin, Iout, and Vout of the sequence
Boost Converter Closed Jacks
3
7
68.99
7.716
7.716
482.93
59.53
12
4
8
78.98
8.841
8.841
631.84
78.16
12
5
9
88.95
9.993
9.993
800.55
99.86
12
6
10
98.93
11.16
11.16
989.3
124.54
13
7
11
108.9
12.32
12.32
1197.9
151.78
13
8
12
118.9
13.49
13.49
1426.8
181.98
13
9
13
128.9
14.67
14.67
1675.7
215.2
13
10
14
67.83
24.55
24.55
949.62
602.7
63
e-ISSN: 2723-6692 🕮 p-ISSN: 2723-6595
Jurnal Indonesia Sosial Sains, Vol. 5, No. 5, May 2024 1223
c. Fuzzy Logic Control Boost Converter,
With a fixed input voltage of 5 volts and a gradually increased frequency, the Fuzzy Logic
controlled Boost Converter circuit was simulated and tested. The values of resistors (R),
inductors (L), and capacitors (C) used in this circuit are the same as the values in the previous
circuit (Sirait & Matalata, 2018).
MATLAB control parameters for Fuzzy Logic systems are configured in such a way that enables
optimal performance.
Figure 7 Rangakaan Boost Converter Fuzzy Logic Control
From the series above, the test results are obtained in the following table 4.
Table 4 Fuzzy Logic Control Boost Converter test results
No
Frekuensi
(Hz)
Vin
(V)
Vout
(V)
Iin
(A)
Iout
(A)
Pin
(W)
Pout
(W)
Efeisiensi
(%)
1
1000
5
3.994
3.82
3.99
19.1
15.93606
83
2
2000
5
3.799
5.53
3.71
27.65
14.09429
51
3
3000
5
3.975
4.11
3.97
20.55
15.78075
77
4
4000
5
7.337
0.25
7.34
1.25
53.85358
4308
5
5000
5
10.47
4.46
10.47
22.3
109.6209
492
6
6000
5
6.959
4.15
6.96
20.75
48.43464
233
7
7000
5
5.676
14.01
5.68
70.05
32.23968
46
8
8000
5
5.439
11.82
5.43
59.1
29.53377
50
9
9000
5
7.982
19.64
7.98
98.2
63.69636
65
10
10000
5
7.653
15.31
7.65
76.55
58.54545
76
Table 4 shows that the logic control fuzzy Boost Converter can increase the applied voltage
and provide a relatively high-efficiency value, with a value of >83%. In addition, when the frequency
rises, the output voltage value also rises. However, an error occurs when the frequency is set to 4000
Hz.
e-ISSN: 2723-6692 🕮 p-ISSN: 2723-6595
Jurnal Indonesia Sosial Sains, Vol. 5, No. 5, May 2024 1224
Graph 3: Frequency comparison to Vin and Vout
Graph 4 Frequency to Efficiency Comparison
Figure 1 Waveform of Fuzz Logic Control Boost Converter Circuit
4. Conclusion
Open-loop Boost Converter Investigation The output voltage of a circuit with a fixed input
voltage of 12 V and the Duty Cycle value gradually increases, the Outgoing Voltage increases as the
Duty Cycle increases. This means that the final output voltage is determined by the Duty Cycle value.
The Closed Snap Boost Converter with PID control technique can produce a high-efficiency value of
>63% and increase the applied voltage. In addition, when the input voltage rises, the output voltage
value also rises. The fuzzy logic control Boost Converter can increase the applied voltage and provide
a relatively high-efficiency value, with a value of >83%. In addition, when the frequency rises, the
output voltage value also rises. However, an error occurs when the frequency is set to 4000 Hz.
e-ISSN: 2723-6692 🕮 p-ISSN: 2723-6595
Jurnal Indonesia Sosial Sains, Vol. 5, No. 5, May 2024 1225
5. References
Ali, M. (2004). Pembelajaran Perencanaan Sistem Kontrol PID dengan Software Matlab. Jurnal
Edukasi@Elektro, 1(1), 18.
Arvianto, T. T., Wahjono, E., & Irianto, I. (2020). Perancangan boost converter menggunakan kontrol
proporsional integral (PI) sebagai suplai tegangan input inverter satu fasa untuk sistem
uninterruptible power supply. Teknika: Jurnal Sains Dan Teknologi, 16(2), 136.
https://doi.org/10.36055/tjst.v16i2.8511
Diaz, J. M., Costa-Castello, R., & Dormido, S. (2019). Closed-Loop Shaping Linear Control System
Design: An Interactive Teaching/Learning Approach [Focus on Education]. IEEE Control Systems
Magazine, 39(5), 5874. https://doi.org/10.1109/MCS.2019.2925255
Febrianto, R., Soedjarwanto, N., & Zebua, O. (2018). Rancang Bangun Boost Converter Untuk Proses
Discharging Baterai Pada Penerangan Jalan Umum Tenaga Surya (Pjuts). Prosiding Seminar
Nasional Tekniologi Elektro Terapan 2018, 2(1), 159164.
Harselina, D., & Hendri, H. (2019). Rancang Bangun Boost Converter. JTEV (Jurnal Teknik Elektro Dan
Vokasional), 5(1.1), 11. https://doi.org/10.24036/jtev.v5i1.1.106134
Hushaini, M., Hasan, H., & Gafy, M. (2019). Stabilisasi Tegangan DC Menggunakan Boost Konverter.
Seminar Nasional Dan Expo Teknik Elektro, 1(1), 128136.
Jati, M. P., Basuki, G., & Hasnira, H. (2020). Kendali Fuzzy Logic - Interleaved Boost Converter pada
Aplikasi Motor DC. Elinvo (Electronics, Informatics, and Vocational Education), 5(2), 102111.
https://doi.org/10.21831/elinvo.v5i2.40698
Li, Y., Ang, K. H., & Chong, G. C. Y. (2006). PID control system analysis and design. IEEE Control Systems
Magazine, 26(1), 3241. https://doi.org/10.1109/MCS.2006.1580152
Nasution, H. (2012). Implementasi Logika Fuzzy pada Sistem Kecerdasan Buatan. Jurnal Elkha, 4(2),
48.
Nurcahyo, A., Nisworo, S., Novianto, D., & Kurniawan, R. Y. (2023). Perancangan Interleaved Boost
Converter dari 8-12 ke 24V dengan Umpan Balik Tegangan. JTEIN: Jurnal Teknik Elektro
Indonesia, 4(1), 202213.
Nurwati, T., Wijono, W., Hikam, A. L., & Hasanah, R. N. (2022). Perbaikan Unjuk Kerja Boost Converter
untuk Panel Surya Menggunakan Sliding Mode Controller. Jurnal EECCIS (Electrics, Electronics,
Communications, Controls, Informatics, Systems), 15(1), 2935.
https://doi.org/10.21776/jeeccis.v15i1.692
e-ISSN: 2723-6692 🕮 p-ISSN: 2723-6595
Jurnal Indonesia Sosial Sains, Vol. 5, No. 5, May 2024 1226
Putri, S. D., & Aswardi, A. (2020). Rancang Bangun Buck-Boost Converter menggunakan Kendali PID.
JTEV (Jurnal Teknik Elektro Dan Vokasional), 6(2), 258272.
Saelan, A. (2009). Logika Fuzzy. Makalah IF2091 Struktur Diskrit.
Setiawan, R., & Yuhendri, M. (2020). Implementasi DC-DC Boost Converter Menggunakan Arduino
Berbasis Simulink Matlab. JTEIN: Jurnal Teknik Elektro Indonesia, 1(2), 144149.
Sirait, C. Y., & Matalata, H. (2018). Perancangan Boost Converter Dengan Ldr Sebagai Pengendali
Sinyal Pwm Untuk Menaikan Tegangan Panel Surya. Journal of Electrical Power Control and
Automation (JEPCA), 1(2), 39. https://doi.org/10.33087/jepca.v1i2.9